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When laser light is focussed to intensities of 1014 -
1016 Watt/cm? onto a cold solid, the target surface promptly
rises to temperatures ~0.1 - 1 keV and produces a highly
ionized plasma. Heat energy absorbed from the laser penetrates
into the cold target by nonlinear electron heat conduction
driven by enormous temperature gradients (~ 10° °K/cm)., large
thermoelectric and magnetic fields are generated, thermally
produced x-rays are emitted and the heated material expands
in high-velocity hydrodynamic flow. For all these processes
the working fluid is a dense plasma of highly-charged ions.
Because the densities and/or temperatures greatly exceed
those available in previous laboratory plasma devices, we
find many interesting new topics for scientific investiga-
tion.1-2-3'4

This paper covers some aspects of the theory of atomic
processes in dense plasmas. Because the topic is very
broad, we have selected a few general rules which give
useful guidance about the typical behavior of dense
plasmas. These rules are illustrated by semiclassical
estimates, scaling laws and appeals to more elaborate
calculations.

Included in the paper are several previously unpublished
results including a new mechanism for electron-ion heat
exchange (section II), and an approximate expression for
oscillator-strengths of highly charged ions (section V).
However the main emphasis is not upon practical formulas but
rather on questions of fundamental theory., the structural
ingredients which must be used in building a model for
plasma events. What are the density effects and how does
one represent them? Which are most important? How does one
identify an incorrect theory? The general rules help to
answer these gquestions.

Unfortunately in most cases one cannot yet directly
employ experimental data to resolve theoretical questions.
This circumstance has been, for many years, a basic
difficulty of research on dense plasmas. For example, in
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FIG. 1. Three favorable geometries for scientific
experiments in laser plasmas. In each case the
emitted or absorbed signal is produced by an
approximately homogeneous plasma region.
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laser-fusion implosion experiments. the observed x-ray
signals consist of a superposition of contributions from a
range of density-temperature conditions along the line of
sight into the plasma. Such data can be compared with
predictions of existing theory, but cannot easily be
unfolded to yield accurate measurement of specific atomic
processes. This difficulty is now solved, in principle, by
the development of experimental geometries more favorable to
scientific studies (Fig. 1).

In the plasma microdot technique (Fig. la) a small spot
of high-Z (i.e., Z > 10) material is imbedded in a low-Z
target such as plastic. Under irradiation the high-Z
material expands as a plasma column, axially confined by the
neighboring low-Z plasma, and strongly dominates the x-ray
emission; a spectrometer observing this plasma from the side
sees a unique density-temperature section of the high-2Z
plasma column. The technique has been applied to flow
visualization (Herbst et al.5), plasma spectroscopy
(Gauthier et al.®) and the verlflcat1on of LASNEX
hydrodynamic calculations (Rosen et al.’ ).

A similar technique (Fig. 1b) relies on a magnetic
field to confine an expanding laser plasma at densities ~
1018/cm3. This steady plasma has been shown, using
Thomson scattering. to be remarkably homogeneous and
therefore an excellent source for plasma spectroscopy
experiments (Crawford and Hoffman®B).

A third geometry yielding a very dense plasma is the
planar shock-wave technique (Fig. 1lc). In this case, if one
knows the material equation of state and measures the shock
speed (e.g., in the stepped-target geometry shown), the laws
of conservation of mass, momentum and enerqgy enable one to
uniquely determine the density-temperature conditions of the
hot dense plasma. With proper selection of focal spot size
and pulse length, one can realize a homogeneous steady Plasma
at densities greater than the initial solid density.?
Interesting recent experiments with shock- produced plasmas
include absorption spectroscopy (Bradley et al. {
measurement of electrical conductivity (Ng et al. 1) and
hydigdynamlc studies with short-wavelength light (Fabbro et
al. ).

These new experimental techniques, a worldwide prolif-
eration of pulsed laser research facilities. and the strong
scientific interest stimulated by the recent demonstration
of a laser-pumped soft X-ray laser(7) together signal that

dense plasma research will be very active in the next few
Years.

I. THERMAL IONIZATION

The most obvious result of laser heating is thermal
ionization produced by electron impact and/or photoelectric
absorption of x-rays.

The first general rule is a well-known characterization
of plasma ionization in complete thermal equilibrium LTE:
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G-1.) An equilibrium plasma ionizes to a charge
state Q(Z, p, T) at which

1(Z,Q) = & kT (1)

The coefficient £ is a fundamental measure of
plasma density effects.

In Eq. (1), Z = nuclear charge, Q = ion (average) charge
state, I(Z,Q) = ionization potential. ¢ is essentially
the electron entropy:

2

£ = %n( ) = S/k - > (2)

n X3
e

where \ = (2ﬂh2/mekT)1/2 = electron thermal deBroglie wave-
length; ng = electron number density = Qp/AMp: S = entropy
per free electron; k = Boltzmann constant. Equations (1)
and (2) follow from the Saha equation for plasma ionization
(Zel'dovich and Raizerl3); the derivation assumes
equilibrium non-degenerate plasma conditions.

Figure 2 gives contour plots of the ionization state,
the ratio I/KT and £ = 1n (2/ngh3). One sees £ =~ 10-15 for
low-density hot plasma, but £ < 5 at dense-plasma conditions.
It is evident that £ and I/kT are approximately equal. The
figures are based on the Thomas-Fermi cell model, but other
theories give similar results.

The ionization potentials I(Z, Q) are the basic atomic
data required to calculate equilibrium (LTE) ionization.
There are two ways to obtain quick estimates of the ioniza-
tion potentials: Thomas-Fermi theory.3 or the Bohr model,

2 2

1 = Qe

(3)
D 55 p?
0

which relates the ionization potential to the ion charge Q

and the principal guantum number (= n) of the outermost bound
electron.

Combining Egs. (3) and (1) we find

o = (§ n®kT )1/2 . /2 ()
13.6 eV

as a scaling law for partial ionization in LTE. Equations

(1)-(4) are used to compare physical processes; for example,

the free electron specific heat = 3/2 Qk is less than the

ionization specific heat = I(Q) 4AQ/4T = 1/2 EQk for a

partially-ionized plasma with £ > 3.

The scaling of Q with T1/2 fails (i) for fully-ionized
plasmas, where Q = Z: (ii) at low charge states, Q < 1:
(i1i) near closed-shell configurations, where Q is relatively
independent of T over a range of temperatures; and (iv) at
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very high densities where degeneracy and pressure-ionization
occur. The scaling also fails at low densities where most
pPlasmas are optically thin and depart from thermal equilib-
rium. The scaling Q « T1/2 jig jllustrated in Fig. 3.

Energy Level-shifts

Even for isolated ions, the energy-levels of core and
valence electrons change as the ionization state increases.
These changes are simply described by an algebraic screening
model often used in fusion research. Let us examine a
hypothetical Bohr orbit in a many-electron atom having

average orbit radius rp, velocity V. The assumptions
of the Bohr theory are:

Q e2 mv2
2 = o mv_r_ = nh
r2 B L ! nn
n
The first relation expresses Newton's law (F = m a), the

second the quantization of angular momentum. The solution



of these two equations is

rn = agn?/Qp (5)

Vn

QneZ/nh (6)

The useful result of this simplified treatment is the idea

that rp, and vy depend upon an effective charge associated
with the electric field at radius r = fp . i.e., upon the

inner screening charge

Q =2Z - Y o _P (7)
n m<n nm n

Here Pp is the population of the mtP shell and opg

is a screening coefficient which tells what fraction of the
charge of shell m resides inside radius In- In Eq. (7)

the screened charge is assumed to be independent of subshell

quantum numbers (j or %) and a linear function of the
populations.

100 | 7 T T 17T T17TT1T7171 T T 1 T T TTT
- ’
N Density .
- 104 g/cc
= 10~2g/cc
B 1g/ce _

Molybdenum =

ionization
(LTE) 1
1 - 1 1 1 3111 1 1 d 1.1 111
10 100 1000
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FIG. 3. Molybdenum charge state as calcu-
lated by the screened hydrogenic
average-atom theory. The figure shows

the scaling Q « T1/2, and the tendency of

Q to decrease with rising density in the
nondegenerate density range. The ionization
shelf structure at closed-shell configura-
tions (Q = 40, 32, 14) disappears at high
densities, illustrating rule G-7.
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The energy Ep of the electron also involves the
electrostatic potential V(r) at radius rp,
1 2
En = Emvn - eV(rn)
The potential V(r) has a contribution from outer screening:;

i.e., from electrons outside radius rp. A useful
approximation for this potential is:

Q e P e
viry) = EE— - L om ;E"
n mn>n m
The first term is the potential outside a spherical core of
charge + Q, e, and the second term sums the potentials
inside spherical shells of charge - oy, Ppe located at
radii ry > rp. With this model for the electrostatics,

Qrzle2 Pme
E = - + Z (o}

(8)
n 2a°n2 m>n mnoTn

The approximation based on Eqs. (7.8) is the screened hydro-
genic model (Strdomgrenl4, Mayerl®, Lokke et al.l®, Zimmerman
and Morel’/). 1In this treatment, inner screening enters

the calculation of Qp, ry, and v,, while outer screening
affects only the potential V(rp) and energy Ep. Because

of screening the one-electron eigenvalues E, are strong
functions of the ion charge-state (Fig. 4).
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matter Lﬁ
xX-ray 1
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lonization Z2*
FIG. 4. Variation of Aluminum one-electron eigenvalues

with ion charge. Dashed curves are the screened hydrogenic
model, Eq. gB): s0lid curves are WKB eigenvalues for
Thomas-Fermi ions. The calculations illustrate rule G-1la.
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This simplified model is actually better than it
appears at first sight for three reasons:

(1) One can optimize the choice of screening constants
Onm: and thereby obtain a reasonable approximation to
results of more accurate quantum calculations.l8

(2) There is a Koopman's theorem which relates the
one-electron energy-level E, to_a formal total ion energy
of tractable functional forml7.18

oE.
E = __lgﬂ (9)
n aP
n
with
Q2e2
Eion = - ¥ n Pn = ¥ EnPn - Uee (10)
n 2 n
2aon

Because of this result, one can employ Ejopn as a model
Hamiltonian which generates a consistent approximate
statistical theory of the spectra of many-electron
atomS.3.17518

(3) Equations (5-8) are close cognates of more
persuasive formulas obtained by simplification of the WKB
theory of complex atoms. For example, the non- relativistic
WKB theory yields an energy eigenvaluel8.19

Q2e2
= - n + E
n 2
2ao(n—AnQ)

together with a precise specification of the inner-screened
charge Qn, the gquantum defect Apjg and the outer-

screening correction Ef. This WKB formula is close

enough to the simpler model of Eq. (8) to give useful
practical guidance in developing the model (Fig. 4).

E (o]

Inner screening dominates the increase of the ionization
potential I(Z,Q) with ion charge Q. On the other hand. outer
screening is the reason why K-shell absorption or fluores-
cence energies change with removal of outer electrons.

Combining these ideas. we extend the rule G-1

G-la.) Excitation energies are approximately
proportional to I(Z,Q) « kKT. Line spectra and
absorption edges change with temperature to follow
the maximum of the black-body spectrum.

The rule is illustrated by calculations of aluminum
photoelectric absorption (Salzmann and Wendin?®) based on

Saha ionization-equilibrium calculations of the ion
populations (Fig. 5).
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FIG. 5. Aluminum photoelectric absorption
coefficient for density nj = 102l/cm3 at
temperatures a.) 32 eV, b.) 100 eV, c.) 320 eV,
d.) 1000 eV (Salzmann and Wendin29). The
motion of the effective absorption edge
illustrates rule G-1la.

For fully-ionized plasmas, the thermal average
(Rosseland) opacity has a temperature-dependence ~ T-3
resulting from the (hv)-3 dependence of the bremsstrahlung
absorption cross-section.?l For partially-ionized plasmas,
the dominant photoelectric cross-section has the same
frequency-dependence (hv)“3. but the opacity now has a
much weaker temperature- dependence ~ T-1 due to the
thermal shifts of photoelectric edges.

Shifts in energy-levels associated with ionization are
much larger than any possible level-shift due directly to
density itself. This point is important because the
ionization state depends on density through Eq. (1). The
density derivative (3Ep/38p)p includes a large red-shift
associated with recombination while the derivative at
constant charge state (aEn/ap)Q is much smaller or zero.22

I1. ION INTERACTIONS

The time-average distance between ions is obviously
much greater than the ion size in low-density plasmas. 1Is
this instantaneously true? Do ions touch during their
thermal motion in the plasma?

The ion core radius Ry is related to the ionization
potential I by

Ri(Z.Q) « Qe2/1(2Z,Q)

(this estimate is exact in Thomas-Fermi theory3) and for
ions having thermal energies ~ kT the minimum ion
separation Ry is that for which
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2 2
RL

Together with Eq. (1) this implies

R
L _ (11)
Ri =~ Qf » 1

especially for low-density plasmas where { » 1. Equation
(11) says that ion cores are well-separated even during the
closest encounters. This in turn implies that the

Coulomb law U(R) = Q7 Q €2/ R is a good representation of
the ion-ion potential.

For low-density (ideal) plasmas there are three length
scales which describe ion spatial correlations:

Landau length = Q2e2/kT

RL =
. 1/3
Ro = lon-sphere length = (3/4ﬂni) (12)
Di = (ion) Debye length = (kT/4ﬂQ2e2ni)l/2
For the usual low-density plasma, 23
R, « Rg « D3 - (13)

When this inequality is satisfied, there are many ions
in a sphere of radius Dj and the ion correlations are
described by the Debye-Huckel theory. 1In this theory., a
static point charge is screened within a length D given by

2 2 2
1 1 40" e n.1 4mQe ni

= 2% 2 = KT. Y XT
. 1 e
1 e

1
1_ (14)
DZ

v}
v}

The first term corresponds to ion screening and the second
to screening by free electrons. It is evident that ions
dominate the static screening whenever Q > 10:; this is the
case for laser plasmas generated from $i0,. Al, etc.

* The conclusion fails in dense plasmas where Ry is no
longer the distance of closest approach, see Eq. (18) below.

-10-



In order to understand the ion correlations induced by
Coulomb interactions, it is useful to examine the ion number
density fluctuation (6n§(k)) as a function of wave-vector
k. In the Debye-Huckel theory (SalpeterZ?),

( n p?(k? « 1/D2l
~ > 2 electron and ion screening
1 + kK™D
2 Dy kzD?
<dni(k)> = - ions only (T - ) (15)
1 A" 2.2 e
1l + k™D,
i
ii ideal gas without screening
v

.

Figure 6 plots (Bn% (k)) for a typical low-density
plasma. One sees that Coulomb interactions tend to inhibit
the long-wavelength charge-density fluctuations relative to
those which would exist in an uncharged ideal gas. This
suppression of fluctuations is the k-space image of the
Debye screening itself.

We abstract a general principle from the example given
in Fig. 6:

G-2.) Coulomb interactions tend to suppress
(reduce) thermal fluctuations.

The argument for the general rule is the following:
usually a non-interacting (ideal) many-body system has many
highly degenerate states which are equally populated in
thermal equilibrium. Coulomb interactions split this
degeneracy.: fewer low-energy states are populated more
heavily and so the non-ideal gas has less thermal
fluctuation.

The general rule is also illustrated by ion Stark
broadening: Coulomb interactions between the plasma
perturbers reduce the large microfields responsible for ion
Stark wings in comparison with the non-interacting
(Holtsmark) calculation (Ecker?5, Mihalas26). Another
example: ion Doppler line-width is reduced when one includes
the effect of Coulomb interactions between the ions
(Dicked7, Burgess and Lee28). Another example: calcula-
tions of ion charge-state distributions show that more
rigorous models which include the electron-electron inter-
actions predict less ionization fluctuation (5Q2) than a
non-interacting average-atom model (Green27, More2).

Ion Coupling

The numerical study of ion correlations in plasmas has
centered around a standard idealized model, the one-component
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FIG. 6. Ion number-density fluctuation
for a plasma with nj; = 1018/cm3, 0 = 10,
Te = 1 keV and T3 = .8 keV. The large-
scale charge fluctuations are strongly
inhibited by Coulomb interactions, illus-
trating rule G-2. Electron screening
reduces the effective Coulomb repulsion
and permits some (neutral) density
fluctuation.

plasma (Brush et al.30, Hansen3l). This is a model of
classical point charges + Qe moving in a uniform fixed back-
ground of negative charge.

The equilibrium statistical mechanics of the one-
component plasma is generated by the configqurational
partition function Z.:

2 2

e
a3 3 3 -7 Qe
Z, = Ja°R Jd"R,...JA Ry ey % IR - lekT
- rN Id3x | Id3 e r i |x - x. |
= Re gre-dd Xy i, %17 %5

In the second form, the integration variables are changed
from ion positions R. to scaled positions X, = i/Ro' where

Ro = (3/4wny)l/3.

It follows that the configurational partition function
depends essentially on only one variable, the ion coupling
parameter I', defined by

2 2
= Qe
r = R KT (16)
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The ion coupling parameter describes the strength of ion
correlations and controls the validity of different
theoretical approaches. For weak coupling (I « 1) the
Debye-Huckel theory is a good approximation. In this case
the average Coulomb energy per ion is

2 2 >
_ 1 Q0e v3 3/2
AEC = -3 Di = - 5 r KT (17a)

In the weak coupling case (I' « 1) this energy is much less
than the average thermal energy ~ kT, so the Coulomb
forces are weak perturbations; the same conclusion is
implied by the fact that many ions (N a(Di/Ro)3 » 1) are
required to screen a test charge.

For strong coupling (I > 0.5) one has a nontrivial
many-body problem which is well-suited to computer simula-
tion. 1In this case the screening cloud around each ion
involves a modest number of particles, so that a simulation
using a few hundred computational ilons becomes reasonably
accurate.31-33 The Monte Carlo (MC) simulations examine
many configurations and weight the contributions by a
Boltzmann factor corresponding to the total ion interaction
energy (computational algorithms are described in Ref. 34).
Molecular Dynamics (MD) simulations simply solve the classi-
cal equations of motion to generate time histories of the
jon dynamics; physical quantities are calculated as time
averages.

What are the effects of strong ion correlation? The
rule G-2 goes directly to the heart of the guestion: ions
repel each other and try to avoid close encounters. This
forces them into an increasingly orderly arrangement which
ultimately (for T > 170) becomes a crystalline state.

For T > 1, the ion-sphere model is not a bad
approximation: each ion is surrounded by a cavity filled
with electrons but devoid of neighbor ions. The cavity
radius is ~ Ry: numerical simulations show that the
nearest neighbor distance is = 1.7 R,. The energy per
particle is approximately

2 2
BE, = - 35 & - _ 2o T kT

¢~ 710 R (17b)
o}

which corresponds to the electrostatic interaction of a

point ion with a uniform neutralizing electron gas in the

ion-sphere volume. MC simulations have given more accurate
values for this Coulomb energy AE.(T).

) An interesting feature of the strongly coupled plasma
is the breakdown of Eq. (13). Ry, originally defined as
the (energetic) distance of "closest approach," becomes

greater than the average ion separation R,. Indeed,
R
L
R = r > |
o

In Fhe strongly coupled plasma the ions are forced together
against their Coulomb repulsions. The lengths Ry and Dj
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become meaningless, and the single distance Ry serves as
distance of closest approach, average pair-separation and
screening length.

Simulations of the one-component plasma provide a
variety of useful data. The Coulomb interaction energy
AE; enters the plasma hydrodynamic equation of state and
the equilibrium ionization (AE; generates the continuum
lowering).  The probability distribution for plasma electric
fields P(Iﬁl) can be obtained from the plasma simulations;
this determines the ion Stark profile. The ion pair
distribution g(r) gives the probability to £ind a neighbor
ion a specified distance r away from one central ion; g(r)
is used in calculation of gquantum interference-scattering
effects which arise in electrical conductivity or plasma
bremsstrahlung emission.

Charge-state Variations

The one-component plasma is an idealized model; although
it is very useful it also omits certain physical processes.
Among these are phenomena associated with changes in the ion
charge Q.

For real plasmas the time-averaged ion charge Q =
Q(p.T) is dependent upon density and temperature and this
means that care must be exercised in adapting results from
the OCP simulations (e.g., integrating the OCP specific heat
with respect to temperature).

For temperatures much below the Fermi temperature, the
ion charge depends only upon density, Q(p.T) = Q(p.0).
Examination of Thomas-Fermi calculations for degenerate
matter shows that a rather accurate description of this
pressure ionization is given by3

Ri(Z.0) = Rg (18)

which determines the plasma ionization state Q(p) at low
temperatures in terms of the ion core radius R;(Z,Q) and
ion-sphere radius Ry. With this equation one sees that
ion cores indeed come into close contact in degenerate
high-density matter.

In the nondegenerate range the plasma ionization state
is proportional to T1/2 according to Eq. (4). Laughlin has
pointed out that this power law implies that [ is essen-
tially independent of temperature in a partially-ionized
plasma.3® This means that ion thermal motion (e.g., ampli-
tude of ion vibration with respect to the neighbors) is
approximately independent of temperature: the potential

between ions grows stronger as rapidly as the thermal energy
does.

The ion charge also changes with time through ioniza-
tion and recombination and this causes interesting new
effects in the ion dynamics.

We will describe one such process, a Raman effect in
electron-ion energy exchange, which is predicted theoreti-
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cally for partially-ionized plasmas.and.caused by sudqen
charge fluctuations occuring in ionization and recombina-
tion.2:36.37 The effect is a dense-plasma process, but is
quantitatively important at surprisingly low plasma densities
where it affects the viability of one well-known x-ray laser
scheme.

In this case, the pumping efficiency of a resonant
photopumped laser depends strongly on the Doppler linewidth,
which is determined by the ion temperature T3, controlled in
turn by the heat exchange between electrons and ions
(Hagelstein37).

Collisional Heating of Ions

Ordinarily the electron-ion heat exchange is calculated
from the Landau-Spitzer formula,Z23.38

dE:.1 me
at ﬁ; (kT, - KT;) n,o

eff'e (13%)

where Ej = energy per ion; mg, Mj = electron, ion mass: kTg,

kTy = electron, ion temperatures; ng = electron number
density; Ve = (kTe/me)l/2 = electron thermal velocity: and
2
- avan (2842
Ougg = 42w (kTe) log A (20)

is an effective collision cross-section. The numerical
coefficient in Eq. (20) comes from a well-known formula for
the electron-ion coupling time 7143 (spitzer23). Equations
(19)-(20) describe energy transfer occuring in electron-ion
collisions; a small fraction (proportional to mg/Mj « 1) of
the kinetic energy of the hotter particle is transferred in
each Coulomb collision.

Ionization Heating of Ions

The Raman heat-exchange mechanism is also a consequence
of electrical forces. Consider an ion of charge +Qe, sur-
rounded by a neutralizing or screening cloud of electrons and
ions. The electrical energy stored in this screening cloud is
AE. ~ Q%e?/Rg, where Rg is the appropriate screening length.

After electron impact ionization, the screening cloud
must adjust to the increased ion charge Q' = Q + 1. For a
time short compared to the ion plasma oscillation period
(1/vpj) the extra unit charge is screened by electrons at a
large distance = Dy = electron Debye length. At the radius
Ry, of the nearest neighbor ions this leaves an unscreened
electric field which causes the neighbors to relax outward
from the central ion. This outward motion is rapidly therma-
lized into ion kinetic energy. Thus in each ionization
even% the ions gain a thermal energy of order d (AEq)/74dQ
~ Qe</Rg.

This reasoning gives an estimate<

at ~rR. ? M%iVe (21)



lonize, Recombine,

~ screening cloud screening cloud
expands \ r relaxes in \
| + +
+ +
+ + + + +
r @ + v Q@) + v @ -+
+
+ + +
+ et +
Charge Q Charge Q + | Charge Q
FIG. 7. Schematic representation of electron-ion energy

exchange during ionization.

for the rate of ion heating associated with the ionization
process. The rate of energy exchange is proportional to the
rate of impact ionization ngojj Ve. and ¢ is a

numerical factor intended to correct for the possibility of
recombination occuring before completion of the changes in
the ion screening cloud.

It is important to observe that the energy transfer is
not necessarily cancelled by a subsequent recombination
event. 1Indeed, if the time between ionization and
recombination exceeds 1l/wpj. and if T3 is sufficiently
low, the screening cloud around the ion of charge Q + 1 has
time to relax into a low-energy configuration; when
recombination occurs, the screening cloud must again
re-adjust and this transfers additional energy to the ion
system.

A very similar heat-exchange mechanism is groposed by
Hagelstein, who terms it ion proximity heating. 7

Using Egs. (19).(21) we can compare the Raman or
proximity heating to the collisional energy-transfer: the
ionization cross-section is usually much smaller than the
Coulomb cross-section but the energy exchanged per lonization
event (-~ QeZ/Rs) can greatly exceed the small energy
transfer (~ mgkTo/Mj) in a collision.

The process described by Eq. (21) is analogous to
phonon emission occuring in the absorption of visible light
by impurities or color centers in transparent solids.3?

In that case absorption raises the defect center to an
eXcited state which interacts with the crystal with an
altered potential; in relaxing to the groundstate configura-
tion in this potential the defect center releases energy as
phonons. This produces a classic optical Raman effect:
emission is red-shifted relative to absorption. Equation
(21) describes an electronic analogue of this process.

After estimating the ion temperature rise caused by
this mechanism in a rapidly ionizing plasma, we reconsider
Eq. (21) to reconcile it with the principle of detailed
balance.
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Example: A Rapidly lIonizing Plasma

The importance of the ionization heat-exchange is
jllustrated by one recently proposed design for a laser-
pumped soft x-ray laser.37 1In this experiment a low ion
temperature (T < 10 eV) would have the favorable conse-
quence of reducing the Doppler width of the pumping
transition. 1In one specific proposal neon ions at a number
density ~ 1018/cm3 would be rapidly stripped to charge
Q = + 8 by photoelectric absorption of kilovolt x-rays
from an intense laser-plasma source. For the proposed plasma
conditions one has kT3 = 1 - 5 eV and kTg = 60 - 200 eV.
With these assumptions, the screening lengths defined by Egs.
(12, 14) are:

R = 60 A
o
D. = 10-20 A&
1
De = 200-400 A

Since Dj « Rg one has a strongly coupled plasma
despite the relatively low ion density.

In the ion-sphere description of this strongly coupled
plasma, the central ion is assumed to be surrounded by an
electron gas which is nearly uniform in the range 0 < r
< Rg: outside this range the other ions and electrons
are taken to comprise a uniform neutral plasma.

When an ion of arbitrary charge @' 1is placed in this
plasma, it will repel neighbor ions in order to produce a
cavity containing only electrons, whose radius is such as to
assure electrical neutrality. The screening energy is then
AEc = 9/10 (Q'2e2/ R') with Q'= (4m/3) R'3 ng and constant
free electron density ng determined by the average
ionization state {(Q'). When we include the change of
cavity radius with ionization of the central ion we find

2B 3 ge?
Q" -2 RO

A minimal ion temperature can be calculated by integrating
these energy changes with respect to QF from Q' = 0 to
the final charge state Q' = Q. Assuming an ideal-gas ion
specific heat we find:

2 2
1 Qe -R /D
kT.1 > > Ro e o e (22)

This mechanism alone thus predicts KTy > 7 eV for the
case considered. The actual ion temperature would be higher
still because of the collisional heat transfer of Egs.
(19,20) and because of cyclic Raman heating occuring when
the steady-state ionization is achieved.

The limitation indicated in Eq. (22) applies to a plasma
composed of a single substance (e.g.., pure neon). I1f this
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material were diluted with a low-Z impurity (e.g., hydrogen
gas) the same ion heating energy could be shared with more
nuclel resulting in a lower ion temperature.

A Question of Detailed Balance

The formulation of electron-ion heat exchange based on
Eq. (21) suffers from one significant defect: it appears to
predict a continuous heating of the ions and thus appears to
predict that the ion temperature T; continues to rise even
when T3 > Te. This cannot be correct: the heat exchange
mechanism must move the two species toward thermal
equilibrium and the net rate of heat transfer must approach
zero as the temperature difference approaches zero (see rule
G-10).

This formal requirement (associated with detailed
balance) is certainly satisfied by the collisional
heat-transfer described by Eq. (19).

In order to resolve this question for the Raman process
it is useful to consider ionization and recombination
occuring in the presence of a fluctuating electrostatic
potential ¢ produced by plasma particles near a central
ion.

Ionization, Recombination in a Potential ¢

We consider an ion subject to a potential &
generated by the neighboring charged particles. 1If the
plasma density is sufficiently low the nearest neighbor ion
is often the main source of this potential, whose magnitude
is therefore ~ Qe/R,: for definiteness the reader may
consider this case while noting that the reasoning is
independent of the source of the potential.

It is assumed that the spatial variation of the
potential ¢ is on a size-scale much larger than the ion
radius Ry and the time variation is slow compared to
electron transit times. An electron of energy gains a
kinetic energy = e & as it approaches the central ion,
and the modified impact ionization cross-section is
therefore approximately ojj(eq + ed)., where
0ijil€g) was the original cross-section for impact
ionization without the potential.

After ionization there are two low-enerqgy free
electrons. One or both could be at low kinetic energies
(e < ed) where they are actually loosely bound by the
plasma fluctuation. However electrons in this portion of
phase-space are extremely collisional and therefore may
still be regarded as free.

The ionization rate is affected by a change in the
distribution function for the incident free electron and by
the probability of finding the target ion in its specified
charge state. Assuming the ion probabilitles are determined
by an equilibrium Boltzmann factor proportional to
exp(-Qe®/kT;), and assuming the electron distribution is
a nondegenerate Maxwellian function of the asymptotic energy
€o., the result is a modified ionization rate containing
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the Boltzmann factors exp(e®/kTg - Qe¢/§Ti) and a cross-
section evaluated at the shifted energy e€g = €5 + e9®.

The three-body recombination which is the time-reverse
of this ionization also has an altered rate and the changes
are slightly different. In this case the distribution
functions contribute Boltzmann factors

exp(2e¢/kTe - (0 + 1)e¢/kTi)

corresponding to two electrons incident upon an ion of
charge Q+1. The 3-body cross-section is also evaluated at
modified energies determined by energy conservation. Again
there is a question about the low-energy portion of electron
phase-space where one or both incident electron(s) could be
formally bound to the potential fluctuation; again it seems
reasonable to assume these electrons are in equilibrium with
the adjacent positive-energy states.

If ion densities are determined by the LTE Saha
equation containing the electron temperature, the ratio of
recombination and ionization rates becomes

0 S S
exp[e¢(kTe - kT_1)] (23)

Because this ratio is not unity for Tj # Te , the

Saha population ratios are altered when the temperatures are
unequal. An effect of this character has previously been
predicted.40

Using the corrections described we can readily form the
rate of electron-ion energy exchange,

dE; 1 1

it - (ed{1 - exp[efb(m - ﬁ)] nediiv) (24)

The average is taken over configurations of the local
environment and over the distribution function of the
incident electron. The recombination contribution was
related to the ionization rate as described above, using the
LTE Saha detailed-balance condition. If we expand Eq. (24)
assuming the potential e® to be smaller than either

kTe or kT; , we find

T = (e®) (i - —e) (oo, v (25)
1

This expression is a generalization of Eq. (21) for the case
of nearly equal electron and ion temperatures; it predicts
zero heat transfer at equilibrium and changes sign with the
temperature difference. 1In the other limit (kT3 «

kTa) Eq. (24) is qualitatively equivalent to Eq. (21) and

so this more comprehensive approach resolves the difficulty
associated with the requirement of detailed balance.

The discussion given here refers to the process of
impact ionization and 3-body recombination. A similar
coupling of electron, ions and photons arises from
photolonization and radiative recombination.
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ITI. CORE INTERACTIONS AND PRESSURE IONIZATION

The ultimate dense plasma occurs inside white dwarf
stars, at densities ~ 106 g/cm3 : all bound electrons are
liberated, leaving point nuclei imbedded in a homogeneous
degenerate electron gas. The electron gas is increasingly
ideal as its density rises., because the kinetic energy per
electron increases as Eg ~ p2/3 | more rapidly than the
electrostatic energy ( Ze2/r ) ~ pl/3

Although the Chandrasekhar (degenerate) gas model
applies to densities far beyond the laboratory range,?2l
one finds similar behavior for the outer (valence) electrons
in matter at less extreme densities:

G-3.) Strong compression raises electron kinetic
energies relative to potential energies (i.e.,
high pressure "liberates" electrons as it crushes
them down into smaller volumes).

The rule is illustrated by the virial theorem:
3pV = 2K + U (26)

For a cold, low-density system the pressure p 1is small and
one has the isolated-atom result, K = -1/2 U. At high

densities the Coulomb energy U becomes small compared to
the kinetic energy K and one obtains the ideal gas law K

= 3/2 pV (this form is valid in degenerate or nondegenerate
cases).

The virial theorem is often used in calculation of high-
density plasmas so it is worth comment that Eq. (26) is valid
only in certain circumstances. Equation (26) is correct for
an isolated quantum system. It is also valid when applied
to one unit cell of a periodic system such as a crystalline
solid. In these cases there is no difficulty deciding how
much kinetic or potential energy belongs to the volume V
and the wave-functions obey boundary conditions which assist
the required integration by parts.

In a dense plasma each atom (ion) is surrounded by a
random environment of neighbor atoms without high symmetry
or sharp boundaries. This situation is often described by
the cell model: one nucleus located at the center of a
spherical cavity in a uniform positive charge background
(Liberman4l). The cavity radius ( = R, ) is set by the
density (Fig. 8). The electron distribution is calculated
by finite-temperature self-consistent field theory. A
similar physical picture is assumed by the Thomas-Fermi or
Thomas-Fermi-Dirac (TFD) cell models. Several authors have
explored more elaborate prescriptions for the exterior
positive charge density (Perrot 2. Cauble et a1.43).

"
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FIG. B. Schematic representation of the
spherical-cell model. A nucleus of
charge Ze is located at the center of a
cavity of radius Ry in a positive

charge background p+(r). The cavity
radius is fixed by the matter density.
The electron distribution is calculated
from a self-consistent average potential
V(r) and the chemical potential is
chosen so that the cell is electrically
neutral.

For the spherical-cell self-consistent field theory. we
can establish an extended virial theorem referring to the
atomic or cavity volume Vg¢:

3V, = Ky + Ky + U (27)
with
2
ho 2 .3
K(1) T 2m X fs IV lvq’sl d'r
S at
2
L * 2 .3
I((2) -7 2m X fs IV wsv Vg d-r
s at
In Eq. (27), yg = wave-function in the self-consistent
potential (the sums run over all one-electron states, bound
and free) and f45 = Fermi function describing the occupation
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Pressure ionization

Very high density

r cores overlap

occupied states hybridize

Lower density

Rydberg states » -——
are affected ‘ @
=N

FIG. 9. Pressure ionization affects occupied or unoccupied
eigenstates, depending upon the density.

of +¥g. The pressure p appearing on the left side of

the equation is equal to Prr(Ry) . the radial element

of the quantum kinetic stress or pressure tensor evaluated
at the ion-sphere boundary.44%

Pressure Ionization

The great difference between atomic structure for
isolated atoms (ions) and those in the dense plasma is the
importance of the continuum in the latter case. With
increasing density., an increasing number of bound states are
shifted into the continuum.

At high densities, pressure ionization occurs when ion
cores are forced together; the outermost bound states
hybridize and become propagating waves. At these densities
atoms are arranged in a relatively regular close-packed
structure and so ideas of solid-state band structure are
directly applicable. The effective ion charge Q(p) 1is
approximately determined by Eq. (18) in this case.

At lower densities pressure destroys excited states
which are only occasionally occupied. 1In this case the
atoms are separated from their neighbors by random
distances, and the fluctuations in the local environment
probably play an important role. The low-density precursor
of pressure ionization may be seen in the interactions
between Rydberg atoms.

One requires a simple estimate of the density at which
a given level is pressure-ionized, but this immediately
raises questions and there is disagreement in the literature.
We will summarize the most popular viewpoints and evaluate
the formulas for a representative plasma (Table I). The
reader will find further discussion in unpublished reports
of Burgess.45 Peacock,%® and Brush and Armstrong.47

-2~



1.) Ilon-sphere model (Unsold,48 carson et al.,4°
More and Zimmerman,l’/ More,l8 Burgess and Leed®0):

In, = 1/3 Rg (28)

Here rp = orbit radius, Eg. (5): Ro = ion-sphere radius,

Eq. (12). This formula follows from several lines of
reasoning: it is the criterion for significant overlap of
wave-functions on adjacent ions., it follows from a comparison
of the binding energy and the continuum lowering, and it
corresponds to a density at which the nuclear attraction for
the electron is exceeded by the electric field of a neighbor
ion.

2.) Debye-Huckel model (Rogers et al.,®l Weisheit
and Shore.%Z Vinogradov et al.%3):

rp, = D (29)

For the case examined in Table I this criterion predicts
many more bound states than does Eq. (28). Equation (29) is
derived by locating the highest boundstate of the Debye-
screened potential Vpg(r) = (Qe/r) exp(-r/D). The
question is the validity of Vpy(r) when used for this
purpose.

3.) In the white-dwarf literature, one occasionally
sees a mysterious criterion®%

This criterion must be intended to refer to degenerate
plasmas. If applied to the nondegenerate plasma of Table I,
Eq. (30) predicts an enormous number of bound states.

4.) Planck-Larkin method (Rogers®%). This formula
reduces or removes the contribution of bound-states obeying
| Ep | < KT ; for the plasma of Table I this translates
to npsx = 2. a strange or bizarre result. However the
Planck-Larkin formula is properly used only in thermodynamic
calculations, and the continuum states are also modified so
as to essentially replace the removed bound-electron
contributions. For dense plasmas the calculations by the
Planck-Larkin method often agree with Thomas-Fermi results
to surprisingly high precision (see Table 1I).

5.) Landau-length model. 1In ildeal plasmas satisfying
Eg. (13)., it appears that bound states having orbit radii
comparable to R = Qzez/kT would eventually be strongly
perturbed by close approach of a neighbor ion. This does not
mean that states having rp > Ry, would not generate
(broadened) emission lines.

6.) Inglis-Teller limit. For sufficiently large
quantum numbers the Stark effect will cause adjacent levels
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to overlap in energy and make unresolvable contributions to
the emission or absorption spectrum (Griem56). This
occurs at

E _E =r (289 or r = —2 (31)

As the table shows, the predictions of these six models
span a large range.

TABLE I.

Pressure ionization by various criteria for an Aluminum

plasma at T = 1 keV, electron density ng = 1019/cm3

MODEL nmax
Ion sphere model 24
Debye-Huckel model 70
Fermi energy model 870
Planck-Larkin formula 2
Landau length 8
Inglis-Teller 19

At present there is no experimental evidence which would
clearly select between the models. It appears that the most
convincing theoretical arguments favor the ion-sphere
picture.l Without repeating this discussion in detail, we
summarize the main points:

a.) For strongly-coupled plasmas (I' > 1) the ion-sphere
picture is essentially required by our knowledge of ion
correlation: in this case the Debye length has no physical
interpretation. In spherical cell SCF calculations. .bound-
states reach zero binding energy and become resonances at
a density determined approximately by Eq. (28) with the
coefficient 1/3 as given.

b.) For lower densities (T < 1) the question concerns
the existence of discrete bound states having Ry < rp
< D, i.e., large orbits which encircle many ions.
According to the Debye model, electrons in such states
experience a weak spherically symmetric potential
Vpu(r) = (Qe/r) exp(-r/D) which is known to be the
average of the actual potential of the plasma. However
the fluctuations from this average are very strong; the
neighbor ions give rise to potentials -~ .8 Qe/Rgy

which greatly exceed Vpy(r) for r » Ry. In
particular., the electron mean free path for scattering
by these potential fluctuations is less than the orbit
circumference for hypothetical bound-states with
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Ry < Ip < D: it is difficult to believe that a discrete
quantized spectrum exists under these conditions.

Continuum lowering

The mechanism of pressure ionization is at least
partially understood as continuum lowering: as the density
rises the spatial average ¢( V(r) ) of the electrostatic
potential becomes increasingly negative until it ultimately
exceeds the free-atom binding energy of any given electron.

In the calculation of ionization balance, one generates
this effect automatically if the Coulomb interaction energy
per ion,

2 2
AE = -a 2-&_
R
s
(a = numerical coefficient, Rg = screening length) is added
to the energy or free energy of the system. For low densities
(I' « 1) one assumes a = 1/2, Rg = D3 ; for strongly coupled

plasmas one has the ion-sphere form with a = 9/10, Rg = Rg.

The ionization process may be thought of as a change of
Q occuring at constant free electron density ng. Following
the reasoning already presented near Eq. (22) the continuum
lowering is then (for T > 1)

dAE
o

aQ

ge®

) = R

n =const (o]
e

N W

( (32)

This value is also the spatial average of the ion potential
Vi(r) = Qe/r over the ion-sphere volume, but not the
average of the complete potential

2
Qe L
R (R

0 o)

V(r):Q-e—+%

3
r 2

el

which includes the contribution of a uniform free-electron
gas.

Interpolation between ion-sphere and Debye-Huckel
screening formulas is most often accomplished with the
Stewart-Pyatt model.®’7 However this approach has certain

defectg and a completely satisfactory theory does not yet
exist.

Resonances and Pressure Ionization

In gquantum spherical-cell SCF calculations, the effect
of high pressure is to lower the continuum successively
through various one-electron boundstates.

Above a density ppg the boundstate of energy
Ephq becomes a scattering resonance or shape resonance
in the partial-wave potential

2
Ve (r) = V(r) + B L)

- 2m 2
r
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FIG. 10. Theoretical electronic
density of states for aluminum
calculated by the self-consistent
field model (D. Liberman provided
these data). Shading has been
applied to enhance the contrast of 3p
and 3d resonances from the el/2
background continuum density of
states. The density is 2.7 g/cm3

and the temperature is 50 eV.

which has an interior well and a barrier at r = Rg
associated with the centrifugal potential. According to
scattering theory, the pressure-ionized state is described
as a resonance state of complex energy

=~ o .
EnQ = EnQ + i FnQ (33)

The real part E® indicates the central energy of the
resonance; the imaginary part Tpgp = h / 19 determines the
resonance width or ljifetime_ 1thp. The precise definition of
the complex energy Epnp = h2Q04¢/2m is that there exists a
solution ¢p9 (r) of the radial Schroedinger equation which
obeys the boundary conditions

¢ng(r) e o r - 0O

.2 -iQ_.r
¢nﬁ(r) > i NnQe ng r » o (34)
The normalization Npg of these wave-functions is fixed

by a remarkable formula which is the analytic continuation

of the boundstate normalization formula and which implies

the first-order resonance perturbation theory,58
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(o]
§E . = ¢i2(r) 5V(r) dr (35)

where 8V(r) is an arbitrary change in the potential. EquaT
tion (35) gives a unified expression for the perturbation in
EQq and Tpy.

In terms of these resonance energies one can transform
the well-known expression for the continuum density of states
_ 2 dag
gle) = c Vve + = E (22 + 1) 3 (36)

to a simple and general form44

g(e) = c.Vve + 2= 4+ ¥ 2(2%+1) Rel|—= 1 £ (37)
1 vE  ng 1T (e-E_.) E
“ nf nf

The derivation of Eq. (37) uses a representation of the
scattering matrix (S-matrix) originally proven by Regge;>9
it is rigorously correct for one-electron nonrelativistic
potential-scattering theory.

When a state 1s pressure ionized, its binding energy
approaches zero and moves to positive energies where it
begins as a very narrow resonance. For such a state, the
right-hand side of Eq. (37) gives a sharp resonance peak
very similar to the delta-function contributions of the
bound states.

Resonances at higher energies become broad and the
contributions overlap and merge. Using the Born
approximation for the scattering phase-shift, one can show
that at high energies Eq. (36) gives

_ clv
g(e) = C1V vE + — AE + ... (38)
2VE

This corresponds simply to a continuum lowered by

w
BE = £ [ amr’v(n)ar (39)
o}
From Eq. (37) one can calculate the average thermal
population of a resonance state. The result is%%
o]
P, = 2(2%+1) Re |=—= [ e f(e)de (40)
n im = B c B
nQ nf
This is not exactly a fermi function because the resonance
state 1is not exactly an eigenstate. Nevertheless Eq. (37)

shows the various resonances make independent additive
contributions to the total number of electrons in the
continuum.

These resonance formulas give the most precise
description of pressure ionization in the spherically
symmetric cell model. A much more complex picture would
emerge if we could perform calculations for models
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containing a cluster of atoms. Perhaps some progress along
these lines can be made through perturbation theory, based
for example upon Eq. (35).

IVv. QUALITATIVE BEHAVIOR OF DENSE PLASMAS
Electron-ion coupling

The interaction of ions with free electrons is measured
by a coupling parameter defined as
e2
Fei = R KT (41)

This is the ratio of potential energy ~ Qe / Ry to
kinetic energy ~ kKT evaluated for an electron at the
ion-sphere (interatomic) boundary. Of course., electrons
closer to the ion interact more strongly. but the spatial
average { Qe? /rkT ) 1is proportional to Fai-

Assuming the definition Eq. (41) one can show:

Fei £ 0.54 all p,T (42)
for hydrogen plasma described by the Saha equation. This
surprising result is established in Appendix A. It is a
rigorous consequence of the Saha equation, but that theory

breaks down at high plasma densities (see G-5a).

The inequality (42) can be generalized,

G-4.) The interaction of ions with free electrons
never becomes large.

10.0 T T T

Aluminum

10

b

el

0.01

1073 - —

1074 11 I T A R T B BT
10% 103 102 107 110 107 1072 107 1
Density p (g/cm3)

FIG. 11. Electron-ion coupling parameter Tgij for gold and
aluminum plasmas. The small values illustrate rule G-4.
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For materials other than hydrogen it is simplest to
test the rule by examining numerical ionization data.
Figure (11) shows Tgj(p., T) calculated by the Thomas-Fermi
cell model, accurate enough for present purposes; [gj
remains less than unity throughout the nondegenerate plasma
range. At the lowest temperatures, lF'eij approaches unity
as one reaches solid density, but for degenerate electrons
one should redefine Tgj using the Fermi energy rather than
KT as a measure of electron kinetic energy; with this modi-
fied definition Tg3; 1is again small at high pressures.

There 1s a logical reason for the general rule: if
the attraction of ions for electrons strongly exceeds the
electron kinetic energy, some electrons will recombine and
the ion charge Q will decrease, reducing Tgj. '

Electron-Electron Interaction

The interaction between free electrons is characterized
by a coupling parameter rggee which is smaller than g3 by a
further factor 02/3 (the 2/3 power reflects a corrected
separation ry;). This means that TF'fL®® « 1 and hence
electron correlation effects are small, at least for free
electrons.

Coulomb interactions between bound electrons are larger
because the bound electrons are closer together. One can
characterize these interactions by forming a bound-electron
coupling parameter:

rbound N e2 _ In . £ a3
ce - rnkT ~ QKT Q (43)
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?IG. 12. Experimental spectrum of Ta plasmas
1llg§trating sequence of UTA spectra (Andebert et
al. ).
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Evidently these interactions are often important (typical
values of ¢ and Q were given in Fig. 2). Electron
interactions produce term splittings which are readily
calculated for low-Z atoms or for ions carrying few bound
electrons. For high-Z multielectron atoms the spectra
become very complex and there is a nontrivial difficulty
going beyond the one-electron (SCF or average-atom)
approximation.

In recent years, statistical methods have been
developed for the analysis of electron interactions in
complex atoms. The term splitting for an arbitrary
configuration is studied by moment expansion techniques by
Bauche, Klapisch et al., a technique which is called the
method of unresolved transition arrays (UTAs).%0 a
representative recent application to analysis of laser-
produced Ta spectra is given by Audebert, Gauthier et al.
(Fig. 12).61

The distribution of configuration probabilities has
been investigated through a high-temperature series
expansion method (Green®2), a technique which holds one
population fixed and averages over occupations of other
states (Grimaldi and Grimaldi-Lecourt®3), and through
direct numerical evaluation of configuration Brobabilities
for a model Hamiltonian based on Egs. (8-10).4.3

Figure 13 shows the complex spectrum of a gold plasma
which is analyzed by identification of numerous specific
transitions together with a schematized background from
satellite configurations (Busquet, Pain, Bauche and Luc-
Koenig®4).

Degeneracy of Free Electrons

Qualitatively., an electron gas of density ng 1is
degenerate when the Fermil energy Egf,

2
i 2 .2/3
Ef = om (3w ne) (44)
exceeds the temperature KT ; this translates into a
practical density criterion:

3/2

n_ > (1.4 x 1023/cm3) (—52——) (45)

e 10 eV
The criterion is usually satisfied for plasmas produced by
shock compression of solid targets.

Degeneracy has a strong influence on plasma process
coefficients, typically changing the form of their tempera-
ture-dependence. In many cases, the change amounts to
replacement of the temperature by the Fermi temperature
(Ef = KT¢), as in the electrical conductivity where a
proportionality to T3/2 1is replaced by Tg3/2. However,
that rule is not general; the electron thermal conductivity
in a non-degenerate plasma is proportional to T5/2  and
this is replaced by proportionality to T » Tg3/2,

Many theoretical treatments of plasma ionization
incorrectly predict complete recombination at high densities.
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FIG. 13. Experimental spectrum of Au
laser plasma illustrating complex line
cluster features (Busquet et al.®%).

For example, ionic rate equations employ an impact ionization
rate proportional to ng nj; and a three-body recombination
rate = ng ny: with these rates the plasma recombines at

high densities and cannot reach a degenerate state.65

What key ingredient must a theory include in order to
handle the high-density degenerate case?

Degeneracy implies full (complete) occupation of all
states having energies less than the Fermi energy Eg.
Without pressure ionization there are an infinite number of
bound states and these will absorb all Z electrons leaving
no free electrons. Only if bound states are removed from
the calculation by density effects will electrons be forced
into free states to produce a degenerate free-electron gas.

This appears to be a general rule:

G-5.) Degeneracy of free electrons cannot occur
without pressure ionization.

The rule applies to the construction of theories, not
to nature. Experience with condensed matter leaves no
question that both degeneracy and pressure-ionization ocecur
at sufficiently high density in the real world.

At present one does not have a detailed configuration
theory (i.e., Saha equation or ionic rate equation) which
goes over to the high-density degenerate range in a
satisfactory way. This difficulty of the Saha approach is
one of the main unresolved questions of dense plasma theory.
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The Saha equation (or ionic rate equations) are
formulated in terms of exact energy-levels of the isolated
ion. That is, the Hamiltonian is assumed to be diagonal
when expressed in a basis of wave-functions in which bound
electrons are localized on specific atoms (ions), or
alternatively, many-body basis states in which each atom
(ion) has an integral number of bound electrons.

However the Hamiltonian contains additional terms which
are not diagonal in terms of basis states localized on
individual atoms. Wave-functions +WYpg(r-Ry) centered on one
ion overlap states wpg(r-Rj) centered on a neighbor ion,
and this overlap leads to nonzero matrix-elements of kinetic
and potential energy operators.

In low-density plasmas the off-diagonal hopping terms
of the Hamiltonian are exponentially small, at least for
states with small quantum numbers, but they rise with
density. In the dense plasma the off-diagonal terms become
very important. Alternatively, the charge on one ion is not
a constant of the motion (even neglecting collisional or
radiative processes which are treated as perturbations).

The upshot is that the Saha equation is untenable at
high densities, and with it the entire language of hydrogen-
like, helium-like ions (ion stages), ionization rate, etc.

Fortunately, the average-atom model remains workable at
these conditions. The interatomic transfers associated with
pressure-ionization are generated by one-electron operators
(e.g.., kinetic energy or central-field potential energy
operators) and are readily incorporated in the average atom
model. For this reason the average-atom theory yields
results like the usual quantum theory of solids at high
densities. Even the spherical-cell SCF model is accurate
enough to agree with high-pressure shockwave data and
appears to be essentially correct throughout the
high-density degenerate range. (™.

To summarize,

G-5a.) Pressure ionization can be described in the
AA model but not in the Saha theory. Alternative-
ly, at very high densities. the AA is essentially
correct.

It is not guite clear whether (G-5a) is a general rule or
simply a generalization of recent experience. Hopefully the
reader will be challenged to make his own judgement on this
central question in the physics of dense plasmas.

(*)  The problem with the average-atom model is that it
does not exactly represent the electron-electron interaction,
so that it predicts an incorrect line spectrum.

]
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Excited States

Now we return to nondegenerate plasma conditions and
examine the degree to which the highly-charged ion is
susceptible to thermal excitation or perturbation by plasma
microfields:

G-6.) The Z* theorem: at low densities, an ion is
an isolated structureless point charge.

At low densities (ng < 1015 /cm3) where this rule
applies, one has little interest in atomic properties.?23
Ground-state ions are spatially separated by distances large
compared to their size, scatter electrons like point charges
and general behave in a simple fashion.

This behavior is a consequence of rule G-1: excitation
energies are proportional to the ionization potential 1I(Z,Q)
and at low densities become large in comparison with the
temperature. Excited states therefore become exponentially
improbable at low density.

This argument points the other way at high density
where the key parameter £ 1is not large (see Fig. 2):

G-6a.) At high density, all types of ionization
(recombination) become rapid: ions are highly
excited and no state persists long. Many plasma
perturbations become strong but their effects
overlap and average.

We give only a few examples here. 1In the complex
spectra of high-density plasmas, satellite lines correspond-
ing to multiply-excited ions are often prominent.6%4 (See
Fig. 13). Experimental spectra even understate this effect
because the observed spectra usually come from nonequilib-
rium surface regions which typically have lower excited
state populations than the bulk plasma

Second, we can compare rates for ion excitation or
ionization with those for other electron-electron
collisions. For example, the ratio of impact ionization to

electron-electron scattering can be estimated using the Lotz
formula:

(o44V? R -

(o vy 2 °© (46)
ee I3

The result shows the rates become comparable when ¢ becomes
small. Another (related) estimate shows that the ion
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FIG. 14. Thermal average excitation energy per atom for
Niobium plasma at various densities, calculated by
solution of the Saha equation based on Eq. (10). As
density rises the degree of excitation increases,
illustrating rule G-6a.

scatters most electrons as a point charge when £ >» 1 but
the quantum-mechanical form-factor or scattering amplitude
becomes important when £ Dbecomes small.?

The comparison given in Eq. (46) is interesting because
it bears on the possibility that a high rate of ionization
might deplete the high-energy tail of the electron distri-
bution more rapidly than electron-electron collisions can
restore the Maxwellian form.

Third, one can examine the average excitation energy
per atom for plasmas in thermal equilibrium (LTE). Figure
(14) shows this excitation energy calculated by a Saha
equation based on the screened hydrogenic model of Egs.

(8-10). The figure shows that excitation energy rises as
density increases (for fixed temperature). For the case
shown, the excitation energy reaches ~ 1 keV, enough to

permit up to five autoionizations (for the typical ion) and
the atomic internal heat capacity is comparable to the free
electron specific heat.3

Rule G-5a enhances itself in the sense that the excited
atoms (ions) existing at high densities are themselves more
easily ionized, excited. polarized, etc. than groundstate
ions would be.

Classical Behavior

It is a fundamental aspect of quantum statistics that
all the exotic quantum phenomena (from superfluidity to the
quantum hall effect) are demonstrated in cryodenic systems:
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G-7.) Classical approximations become more accurate
at high temperature, high density., high Z.

Our gquestion here is a practical matter: can we
determine the range of validity of Thomas-Fermi
calculations, which are entirely classical except for
including the exclusion principle in the form of the
restriction

0 < f(r.p) < 1

for the one-electron distribution function.

The numbers given in Table II may help convince the
reader that there is something to be explained: the
statistical theory is in surprisingly close agreement with
much more elaborate relativistic quantum-statistical
calculations using both DCA and average-atom methods.

The TFD free energies have been supplemented with the
Scott correction,®® which is a constant in this case. The
ACTEX (Activity expansion) theory®7 is based upon a Saha
equation with elaborate summation of plasma corrections; it
also employs the Planck-Larkin transformation, which helps
explain the greatly increased charge state (see Table I).
The INFERNO model is a spherical cell relativistic SCF
theory.4l The surprise is that the statistical model is
within a few percent of the other theories.

Table 11

Free energy F, entropy S and ionization state of Gold
plasma at T = 630 eV and p = 10, 19.3, and 63 g/cm3. F
and TS are given in keV per atom.

TFD ACTEX INFERNO MAX IMUM
DIFFERENCE

F 639 654 653 2.3%
TS 214 - 210 1.9%
7% 42.8 48.9 42.6

F 622 638 637 2.6%
TS 190 - 187 1.6%
A 39.6 48.3 40.9

F 595 - 611 2.7%
TS 151 - 148 2.0%
7% 37.9 - 38.5
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The general assertion that classical statistics becomes
correct at high temperature must confront the pronounced
guantum effect of K-shell ionization, visible in any quantum
ijonization calculation. Is there a definite mathematical
theorem underlying rule G-77?

One precise statement of the general rule is obtained

from the gquantum density matrix p(r, r') of a
nondegenerate free electron in volume V:

"y = (e BH )

p(L.r ) = ze c
= % exp - [w(r - gl)z/k]z (47)
Here Z = Trace [exp(- BH)] = partition function; H = p2/2m
= free electron Hamiltonian, and \ = (ZﬂhzlmekT)l/2 =

thermal deBroglie wavelength.®8 This expression reduces
to the diagonal (=classical) form as T - o.

Equation (47) says that quantum effects can only occur
on a small size-scale < N\, i.e.., only for the innermost
bound electrons at high temperature. The remaining electrons
are therefore adequately described by the classical
(statistical) theory.

A similar (inequivalent) result is the observation that
the exchange energy per electron,

1 e2

1l _e 3
fexch = 12 N (DM (48)

becomes small as T - o ; of course the exchange energy is
a quantum correction to the classical TF theory.

For dense plasmas the high thermal excitation indicated
by rule G-6a tells us that the effects of various gquantum
states will be averaged or smoothed leaving only continuous
(i.e., classical) behavior.

Figure 15 compares ionization states Z*(T) for
aluminum and gold plasmas at constant density p = 10-3
g/cm3 calculated by the screened hydrogenic model (which
includes quantum shell effects) and the Thomas-Fermi
theory.2 The comparison shows the TF approximation to be
more accurate at high Z. Figure 16 shows a perspective
drawing of Z*(p,T) for aluminum. 1In this case the figure
shows the quantum ionization shelf-structure, associated
with the helium-like ion, disappearing at higher densities.

Active Particles

The next '"general rule" poses problems: we are not
certain it is a rule, nor what would be the proof. However
it summarizes a variety of situations, and has proven useful
in detecting errors in complex calculations -- and that is
the acid test of utility. The statement is simple enough:
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G-8.) A small number of high-energy particles can
easily dominate the properties of an equilibrium
plasma. A small number of low-energy (inactive)
particles cannot.

The obvious example is electrical: a few ions in a
neutral gas can easily dominate the conductivity; a few
neutrals in a strongly jonized gas have little effect.

In the calculation of thermal conduction by electrons
or radiation it emerges that the net heat current is strongly
dominated by a small minority of electrons (or photons) at
the high-energy tail of the distribution. 1In these cases
the reason is the rapid increase of mean free path with
energy. Ionization is also dominated by the most energetic
particles, as rule G-1 implies.

Other examples of active particles are the suprathermal
electrons produced in laser-plasma interaction, and high
energy x-rays they produce through bremsstrahlung or K-shell
ionization and fluorescence. These have great importance as
preheat sources, even when they carry as little as a few
percent of the absorbed energy.

In thermonuclear plasmas it is not unusual to find the
fusion rate dominated by collisions involving energetic ions
in the hot tail of the distribution. For this reason. the
processes involving these energetic ions (energy 1loss,
escape, energy transfer to knock-on particles) assume
special importance.

14 T T 80 1 T ==
12 Aluminum , \\h 1 70L_ Gold / —
0 Kshell _| =~ 60— -
N
50
5 8f- -4 57| .
g /‘\\; g A0 B
s & / L-shell 1 30b -
L / <J o
4 k // 20 F —
0 L L 1 0 == 1 1
1eV 10eV 100eV 1keV 10 keV 1eV 10eV 100eV 1keV 10 keV
Temperature Temperature
FIG. 15. TIonization state of Aluminum and Gold at density
1073 g/cm3. Solid line is the screened hydrogenic
averadge-atom model. Dashed line is the Thomas-Fermi

theory. The two approaches are in closer agreement for the
larger Z, illustrating rule G-7.
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A nice example of rule G-8 is given in the Appendix.
There it is shown that the few bound electrons cannot domi-
nate the stopping-power, e.g., for fast alphas resulting from
thermonuclear reactions, even under the special conditions

VBohr <€ Vion « Ve = (kTa/mg)l/2

where the free-electron stopping is inhibited by a large
factor (vjgn/Ve)? <« 1. One would reach an incorrect
conclusion in this case without include the process of
pressure ionization.

Another (related) example is that the large photo-
electric cross-section of bound electrouns cannot dominate
the opacity of a mostly-ionized equilibrium plasma (again.
the proposition refers to the case of high temperatures at
which most ions are fully stripped., so bound electrons are
indeed a minority).

The rule is not perfectly general, as we have seen from
interesting counterexamples given in the lectures of
Dalgarno; neutral hydrogen injected into highly-ionized
plasma produces distinctive and dominant radiative emission
via charge—transfer.69 Of course there would be very

little neutral hydrogen in these plasmas if they were closer
to thermal equilibrium.

-
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FIG. 16. Contour plot of Aluminum ionization state
calculated by the screened hydrogenic model of
reference 17. The density range is 10-% to 10+%
g/cm3; the temperature range is 10 eV to 10% ev.

Note (1.) Pressure ionization at high densities, (2.)
reduced prominence of the K-shell ionization plateau
as density rises. This illustrates rule G-7.
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V. INTERCONNECTION OF PLASMA PROCESSES

As a target is irradiated by laser or particle beam,
the absorbed beam energy is transferred into electron, ion
and photon distributions and ultimately appears as kinetic
energy of hydrodynamic motion, emitted x-rays, magnetic
fields, etc. These energy conversions are described by
plasma process coefficients: rate coeffitients which enter
equations describing the macroscopic plasma hydrodynamics.
For example, the specific heat and pressure measure the
conversion of absorbed energy into temperature and hydro-
dynamic motion, the stopping power dE/dx tells how ion (or
electron) beam energy is deposited, the coupling Tei
describes heat exchange between electrons and ions, and the
opacity «x, determines the xX-ray mean free path
Ly = 1/pky.

The plasma process coefficients reflect atomic events
including scattering, ionization and bound-electron
transitions as they occur in the dense plasma environment.
The rates are functions of plasma composition, density and
temperature and/or state of nonequilibrium. The practical

Electrons Photons

Emit Absorb KK
L T Plasma
FF /’;’ refractive
index
Soft BF / n

photons W)
BB \ Virtual
photons

Radiative rates ‘\\\\\;::\\

v—o energy
- - - - - - - - = loss

Conduction

dE/dx

Heat
exchange

Tei

FIG. 17. Schematic illustration of rule G-11. The
rectangular box represents radiation formulas corresponding
to free-free (FF), bound-free (BF) and bound-bound (BB)
emission or absorption processes. The absorption formulas
can be written as electron or photon cross-sections. These
processes are related by detailed balance and continuity in
energy. The soft photon (hv -» 0) limit of the FF cross-
section is equivalent to the electrical conductivity. The
Plasma index n(v) is obtained by Kramers-Kronig transforma-
tion of the photon absorption cross-section, and the fast-ion
stopping dE/dx equivalent to absorption of virtual photons.
The heat-exchange between electrons and ions is an average
of dE/dx in the special case Ty >> Te and finally the
low-velocity ion stopping is given by a friction coefficient
related to the electrical conductivity.
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output of theory is measured by our ability to predict the
process coefficients. The discussion in this section will
emphasize three general rules,

G-9.) Observable plasma properties change
continuously as bound states convert into free
states.

G-10.) Detailed balance: each process rate is
related by time-reversal to the rate for the
inverse process.

G-11.) The plasma process coefficients are linked
together by a network of exact and/or gqualitative
consistency relations.

The rules are illustrated throughout the following.
One example of rule G-11 is the consistency of pressure
p(p. T) and energy E(p, T): for equilibrium plasmas
this is a simple thermodynamic equation, but for nonequili-
brium plasmas it developes into an extension of conventional
statistical mechanics (More3, Boercker and More7°).
Another example is the Kramers-Kronig relation between
plasma refractive index n(v) and the absorption opacity
Ky./1+72 These are exact connections.

A qualitative consistency must exist between opacity
and the charged-particle stopping-power: dE/dx 1is
essentially a mean opacity analogous tc¢ the Planck or
Rosseland means, i.e., a certain average of the photon
absorption cross-section. This connection is seen by
representing the electromagnetic field of a fast charged

particle as a superposition of virtual photons having the
frequency distribution:

2

2 av
109 ( gy (49)

_ 2a 2

N(hv) = 22 0%(3)

©\0/®

v
lon of charge Q o —_—

Virtual ph

FIG. 18. A fast ion is
surrounded by electric and
magnetic fields which are
approximately equivalent
to a cloud of comoving
photons.
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In this well-known expression v = ion speed (assumed « c),
c = speed of light, a = e2/hc = fine-structure

constant, a = constant ~1 and by = minimum impact
parameter.’

The charged-particle energy-loss results from
absorption of these virtual photons by bound or free
electrons of the target plasma. Strictly speaking, virtual
photons do not obey the dispersion relation o = ¢ k of
free photons, but this does not matter to the extent that
one uses the dipole approximation in the absorption
calculation. The bound-bound absorption opacity generates
an energy-loss of the form:

dE BB
Gt - 50
(3%’ BB J hv N(hv) px = dhv (50)
2 4 P 2
40" e abs m av
= n Yy f P (1 - ==) log (v——)
mvz I n.m nm n Dm boh\)nm

This expression looks like the bound electron contribution
to the Bethe (high-velocity) stopping theory when the
appropriate minimum impact parameter by = h/mv is
selected.

In the Bethe theory, bound-bound (line) and bound-free
(photoelectric) transitions together are represented by the
expression

2
v

4'erze4 nI log (—gﬂ———) (51)
2

dE
(4E,
dx 1(2.0)

bound
mv

where I(Z,Q) is a logarithmic mean of excitation and
ionization energies as indicated by Eg. (50). There is also
a free e}gcgion contribution, calculated by Skupsky and
Deutsch, ~° which has a similar analytic form in which

I is replaced by ho__, the electron plasma frequency of

free electrons, in Bfe high-velocity case. For a practical
stopping formula, one therefore requires a convenient
representation of the bound-electron contribution, i.e.,
1(Z,0Q).

This quantity has been calculated by Thomas-Fermi
theory using arguments based on the inhomogeneous electron-
gas model, closely related to the original Bloch

theory.3:75 The Thomas-Fermi calculations are accurately
reproduced by

.72 - .18%x
i-a2z exp [1.29x 1 X = 0/2 (52)
v1 - X
The coefficient a is = 10 eV. With this formula one

obtains a simple and useful description of the high-velocity
stopping power of partially-stripped nondegenerate plasmas.
Figure 19 compares Eq. (52) with gquantum calculations
performed by E. McGuire.”’6
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FIG. 19. The mean ionization-excitation potential I(Z,Q)
for ions of Al, Kr and Au. Solid line is the TF result, Eq.
(52). Dots are results from gquantum generalized oscillator-
strength calculations kindly provided by Dr. E. McGuire.76

Another example of rule G-11: the collisional electron-
ion heat exchange coefficient of Egs. (19-20) can be
calculated from the stopping power because in the special
case T3 » Tq the heat transfer is the same process
as fast-ion energy-loss to the cooler electrons. In this
case, however, we use the energy-loss expression valid for
Ve 2 Vvj (this is the free-electron contribution in
Eq. (A-10)), and average over the ion Maxwell distribution,

1l 1 aT. 1 dE

1
= = (V.
Tey T3 4t 3, kp, L I
271 7

) (53)

With the proper choice of Coulomb logarithm, the result is
the Landau-Spitzer heat-exchange time (see Egs. (19, 20)
above).

These examples illustrate the utility of the
connections between plasma processes: if we encounter a
dense-plasma mechanism which alters the photon absorption
opacity, Egs. (50, 53) will suggest related improvements 1in
the formulas for stopping power and electron-ion coupling

Tei .

Rule G-10 belongs to the general structure of statisti-
cal mechanics; it plays a powerful role in developing
consistent descriptions of the plasma processes. For
example, it relates absorption and emission cross-sections.
Another typical application was given in section II.

Rule G-9 concerns the continuum and bound states near
it. 1In general terms, the uppermost bound states have much



in common with the continuum states. 1In a more precise sense
there are three related ideas: correspondence, analyticity
in energy and the continuity of bound and free states.

The correspondence principle of the old quantum theory
is the idea that a classically defined quantity qp
(e.g., orbital frequency or radiation emission rate)
approaches the classical value at large guantum number n:

lim ng _ qg1a351cal (54)
n > o

The principle was originally formulated for hydrogenic
spectra which have infinitely many bound states, so that the
limit n - o is defined. From the quantum viewpoint, the
correspondence principle is simply the fact that the WKB
approximation becomes reasonably accurate at large quantum
numbers (but is not exact in general).

The analytic connection between bound and free states
is 1llustrated by the well-known result that bound-electron
eigenvalues Epg are_Eoles of the continuum scattering or
S-matrix Sg(E} = e2109(E), or by the formula of Seaton’”?
which relates quantum defects Apg (for large quantum
number n) to the low-energy scattering phase-shifts &g (E).

These are connections of negative-energy and positive-
energy solutions of the Schroedinger equation, proven by
extrapolation or analytic continuation in energy. They are
rigorous results of the one-electron theory and in most
cases apply to any potential V{(r), although they may
require modification for long-range potentials.

The continuity principle states that observable plasma
properties including the energy per particle, the pressure
and opacity coefficients are continuous functions of density
even at those special densities ppg where a bound
state is pressure-ionized into the continuum. Likewise, the
properties are continuous functions of nuclear charge Z.

These continuity principles have an interesting
history.44.78 As with many of the general rules, they
provide a way to identify incorrect or unsatisfactory
physical models. They also give powerful guidance in
developing approximate formulas for bound electrons. One
example 1s the Burgess-Merts formnla for dielectronic
recombination, obtained by extrapolating an impact-
excitation cross-section to enerqgy transfers where the
incident electron is captured.’? However the classic
application of the continuity principle is the work of
Kramers which we review and extend in this section.

Kramers' Hydrogenic Radiation Formulas

The emission of x-rays by free-free (FF), free-bound
(FB) and bound-bound (BB) processes in a plasma are
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described by the following kinetic equations, which give the
number of photons emitted per cm3-sec-keV:

3 Bremss
FF 247 p do _
3dN -, f - o Iv, 1 £(e dgpy  (n,+DM1 f(E)](BS)
d'r dt dhv h
FB 2a°p FB P
dN do n
=0, L] —5 2 vl flegpy (#1571 (56)
d r 4dt dhv n h n
BB P
dN n
=n. ¥YY P_ A (n_+1)[1-==)] (57)
d3r dt dhv I n no no no - n v Dn
In these equations, ny = number density of target ions, f(eg) =
distribution function for incident free electrons, n, = number

of photons per mode at energy h,, Pp = population of bound-
states in shell of principal gquantum number n and Ap . =
Einstein rate coefficient, po = m v, = momentum of incident
electron. The degeneracy factor [l - f(e)] or [1 - Pn/Dn]
describes possible occupation of the final state.

The Kramers cross-sections are:13.80
2 3.2 2
a”a

doBremss 8w Z (e /a ) (58)
dhv 3v3 hv Eo
doFB 8 24a3a§ e2/a0 eZ/a0
= ( ) ( ) 8(e_ - hv — E_) (59)
dhv 3,3 n3 Eo hv o n
2 2 2 .
A Bm e v emlss
no > n = N fn n I(hv) (60)
mc (o}

where the line profile 1I(hv) and emission oscillator-
strength obey

[o4]

1} I(hv) dhv = 1 (61)
—
2 2 nn 3
femiss _n fabs _n 32 o) (62)
0,0 n 2 n.n, n 2 3mv3 (n 2 _ n2)3
o) o o]

The Kramers bremsstrahlung emission cross-section is
derived from classical radiation theory: a free electron of
energy €5 = 1/2nm v02 > 0 approaches a point nucleus of
charge + Ze along a hyperbolic trajectory. The electron
gains a kinetic energy =Ze? / Imin as it approaches its
innermost radius rpip = agt2/Z ( HhL is the angular
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FIG. 20. Schematic representation of
free-free, free-bound and bound-bound
emission processes. The formulas which
describe these processes are closely
related because the emission occurs

during the strong acceleration near the
target nucleus.

momentum). For the collisions which produce the majority of
the emission, rpjp is small; Kramers' calculation is most
accurate for the case where Ze? / Imin »® €o- The opposite
1imit is described by the Born approximation. 1In the
Kramers case, the electron follows a hyperbolic path with
strong curvature; the closest portion of the orbit is at

radius ~rpjp and is traversed at velocity
2 — . . < [3{2
Vmax = 2mZe  giving radiation of frequency = _Bin
7 fmin v 2mZe?

The radiated energy spectrum is calculated by fourier
analysis of the acceleration and then summed over impact
parameters (angular momenta):; the result is Egq. (58).81

We emphasize that this calculation describes the
classical non-relativistic bremsstrahlung of an electron
colliding with an isolated point charge. There are many
physical corrections:
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Even for collisions with a point charge ion, the
quantum theorg gives a correction referred to as the
Gaunt factor.82

For collisions with a high-Z point charge there are
significant relativistic corrections. These corrections
can be appreciable even for €y « mc? if the kinetic
energy =~ Ze? / rpjp 18 relativistic.

For collisions with partially-stripped ions, the
emission cross-section is likely to vary between a
Kramers cross-section determined by the ion charge Q
for soft photons to that determined by the nuclear
charge Z for hard photons produced at small radii.
This bound-electron screening correction is discussed
by Lamoureux and Pratt83 and Kogan and Kukushkin.8%

Numerical calculations of bremsstrahlung from partially

stripped ions including effects (a.b.c) are reported by Feng
and Pratt,85 Lee and Pratt.86

d.)

One dense-plasma effect is plasma degeneracy,
represented by the final-state factor [1-f] in Egq.
(5). 1In the Kramers approximation the effect of
degeneracy on the net emission rate turns out to have
simple analytic form.2.87

In dense plasmas. the plasma dielectric function alters
the dispersion relation of the outgoing photon. This
effect is interesting because it alters the detailed-
balance equations, but the results are not quantitative-
ly large in typical laboratory plasmas.88

Another dense-plasma effect is screening of the ion
potential by the exterior plasma. This has been
calculated analytically by use of the Born approxi-
mation for the scattering;8% however the Born
approximation is very inaccurate in the case of
greatest practical interest (the Kramers case mentioned
above).%0.91 1In reality, most of the radiated

photons originate at small radii where plasma screening
is not large.92

A more sophisticated calculation of the screening
effect describes the environment with ion pair-
correlation functions.23 The result is interference
between scattering by adjacent ions. This calculation
is also limited to the Born approximation and produces
its main effect for low-energy electrons (for which the
Born approximation is surely invalid).

In practice there is considerable interest in the
possibility of significantly non-Maxwellian electron
distributions in laser-plasma experiments. The pre-
dicted changes in bremsstrahlung spectrum, following
from Eq. (5), are quite substantial and may help
identify non-Maxwellian distributions in experimental
continuum emission spectra (Lamoureux, Moller and
Jaeg1e94).
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Of these corrections to the Kramers' formula for brems-
strahlung, we will focus on the largest: the question of
effective charges which replace the nuclear charge 2 when
the plasma is not fully ionized. Normally recombination
and line emission are strongly dominant in a partially-
ionized plasma; exactly the same gquestion of effective
charges arises for those processes. We will examine Kramers'
connection of bremsstrahlung, recombination and line emission
in order to derive modified Kramers formulas which apply to
partially-stripped ions.

To calculate radiative recombination, Kramers extrapo-
lates the bremsstrahlung emission cross-section of Eq. (58)
to events in which hv > €g. All transitions to energies
near the quantized final energy Ep are grouped together
as

FB Bremss oE
do do n
do = _ _ - 63
dhv dhv an 6(eo hv En) (63)
For hydrogenic ions, Ep = - 22 e2/2aon? and this equation
correctly connects Eqs. (58, 59). For ions with bound elec-

trons we employ Eq. (8) for the eigenvalue Ep , with a
level spacing

3E Q
n

an an
o)

For recombination into shell n it is natural to assume the
effective charge ©Q enters the extrapolated bremsstrahlung
cross section:; this is because the radiation occurs close to
the inner turning point. With these assumptions Eq. (63)
gives a nonhydrogenic cross-section (we omit the energy-
conserving delta-function):

2 2 3 2
RR sr Zn 3 ¢ e”/a, OE,
(eg) = = hv (= ) an (64)
3v3 o

« Qi / (n3eohv)

This expression has been extensively compared to more
elaborate quantum calculations and gives very satisfactory
agreement. One example of these comparisons is reported by
Huebner. Argo and Ohlsen.%95% To obtain good agreement, it
is essential that an inner-screening effective charge be
employed in Eq. (64).

Next we examine the case of line emission. 1In order to
treat this as a continuation of radiative recombination we
employ a special trick, one which has a very pleasing intu-
itive content. The idea 1is to regard the upper electron's
interaction with the nuclear potential as a collision.
Because the radiative transition happens during the strong
acceleration occuring close to the nucleus, we can imagine
that it is not important whether the asymptotic energy is
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positive (eg > 0 ) or negative (Ep < 0 ).

We assume there are Pp_ electrons in the upper level
np. statistically distributed over the subshell states., so
that

2
P = 2(2%2 + l)(Pn /2no)
o o

The electrons in states of small angular momenta (elliptical
orbits) approach the nucleus with the orbital frequency

Vn, = (1/h)(aEno/ano) giving a collision rate:
wy (65)
dt = "n_.%¥ 'n
o) o

Now we define an effective incident electron flux,

Pn 2m|En | JoE

o 1
2 h on (65)
h o)

) 2
™

<
[
-
o Njo

If the idea of a uniform incident flux makes sense, then a
geometrical calculation of the collision rate should agree
with Eq. (65). With an impact parameter b determined by
mvnob = h(% + 1/2) the geometric calculation is

35 = ¢, 2mb ab (67)

One readily verifies that this agrees with Eq. (65).

To summarize: the bound electron(s) in state ng are
equivalent to a uniform incident flux ¢ in terms of the
rate of close approaches to the nucleus. With this equiva-
lence, the line emission rate is a straightforward
extrapolation of the radiative recombination rate of Eq. (56).

ANBB dgtB

———————— = n. ¢ — (n_ + L)Y[1-P /D ] (68)
d3r dt dnhv I n0 dhv v n n

with the formal extrapolation

acB®  aofB (69)

dhv ~ dhv

Again the charge Q appearing explicitly is replaced by the
effective charge ¢Qp of the lower state on the grounds that
the acceleration occurs at small radii.

This reasoning gives

3.2 2
BB a” a dE e /a
do o 2 n o]
dnv = - hv (9p an) g ) 8(E, - hv-Ep)
3v3 n 0
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When Eq. (68) is forced back into the psual ?orm of Eq. (60)
we find an expression for non-hydrogenic oscillator
strengths,2

4 2
ez/a 3 Qn Qn
fabs _ 4 0 o (70)
n=n, 3nv3 hv n° nz

Equation (70) gives a remarkably simple prediction of shell-
averaged oscillator-strengths for arbitrarily charged ions.

From the derivation it is obvious that Eq. (70) reduces
to the hydrogenic form of Eq. (62) whenever Qn = Qno' Of
course Eq. (62) 1s not exact for hydrogenic ions; thefe are
relativistic and quantum corrections of the order of 50 %
(Bethe and Salpeter,96 Rose97).

However Eq. (70) manages to nicely reproduce the largest
effect of screening (Fig. 21). In the example shown, certain
oscillator-strengths change by as much as a factor ~ 10
during ionization and Eq. (70) follows this dependence to
~ 50 % accuracy.

Eq. (70) explains a semi-empirical scaling law for ls-np
transitions recently observed by Benka and Watson.98

The physical content of Eq. (70) has been recognized by
many previous workers: the dominance of the effective charge
of the innermost turning point and the factors 9EL/dn which
which are equivalent to wave-function normalization factors.
It is also true that more accurate oscillator-strengths are
readily obtained from quantum calculations. However Eq. (70)
represents a significant advance for applications in which a
high priority is placed upon simplicity and generality.

" T S

g , r f(1,2)f(1 3_; 1 [ —f12 :
: T — 1 EE L 3
> - f(1,4] = ~ 3
5 T N ‘g’-, — _
2 107 157 £ 107 E
<] = 3 @ = 3
R - Molybdenum J 8 - 3
2 103k analytic - = 10-3 | _
o = screening E B Molybdenum 3
— model i © - relativistic SCF
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FIG. 2la. 21b. Absorption oscillator-strengths for
Molybdenum ions. fppn+ is averaged over initial states
and summed over final states. The analytic screening
model consists of Eq. (70) evaluated with the screening
coefficients of reference 18. The relativistic SCF
calculations were performed by D. A. lLiberman.
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Reverting to the broader perspective of this section, it 1is
useful to reconsider Eqs. (63) and (69). These equations
have shown how to convert the formulas for brems- strahlung
into expressions for recombination and line emission. The
point of greatest interest is that when we calculate
radiative processes including various density effects, some
version of these connection formulas should remain valid.
This will provide powerful guidance toward the future
development of a complete understanding of high-density
plasma radiative phenomena.

VI. NONEQUILIBRIUM PHENOMENA

We conclude this survey with a few comments on non-
equilibrium (NLTE) phenomena.

If we consider high-density nonequilibrium plasmas there
are two simplifications: first, at high enough density our
equations will predict LTE conditions; for each ionization
or excitation process, according to rule G-10, forward and
reverse rates cancel in (or near) LTE. This reduces the
number of independent cross- sections and also points to
reduced sensitivity to approximations in the rates.

Second, many density effects are essentially the same
for LTE or non-LTE plasma conditions. For example, Coulomb
interactions affect the classical motion of point-like ions,
independent of the radiation spectrum or bound-electron
excitation state; the resulting pair-correlation is the same
in LTE or non-LTE cases. Likewise the phenomena of pressure
ionization should be very similar in LTE, NLTE cases.

These remarks indicate that non-LTE plasmas are not
entirely unlike the LTE plasmas considered so far.

NLTE in Laser Experiments

How is NLTE observed experimentally? The answer is
indirect: experimental spectra are compared to elaborate
computer simulations of laser target hydrodynamics including
enerdy transport, ionization, and x-ray production with
special treatment of nonequilibrium electron, photon and ion
distributions. Calculations performed with LTE and non-LTE
ionization assumptions differ dramatically.

Rosen et al.,%% compare theoretical and experimental
spectra for gold disk targets irradiated at 3.1014
W/cm2 (N = 1.06u). The LTE calculation predicts 2-3
keV line emission which is ~ 100 times stronger than
either crystal spectrometer data (confirmed by filtered
XRDs) or the NLTE calculation. This enormous difference is
due to the plasma ionization state: the NLTE calculation
predicts lower ion charges and emissior of softer photons.

The comparison of simulation and experiment is neither
simple nor direct because the computer calculation inevitably
involves ad hoc prescriptions for several key aspects of the
physics., including laser absorption mechanisms, magnetic
field generation and inhibited electron thermal conduction.
The non-LTE calculations are also relatively crude, using
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FIG. 22. Although nonequilibrium processes are relatively
complicated, one achieves some degree of understanding by
concentrating upon the dominant flow of thermal energy.

screened hydrogenic energies, uncorrected hydrogenic
oscillator-strengths and omitting dielectronic recombination
and autoionization rates. Nevertheless the strong effect of
NLTE ionization cannot be missed. Without NLTE computational
capability one cannot realistically describe high-Z laser
interactions.

Lower-Z targets are often fully-ionized in the laser
interaction region and the question of non-LTE becomes moot.

In short-wavelength irradiation one would expect reduced
NLTE effects for several reasons: first, the laser absorption
now occurs mainly by inverse bremsstrahlung which does not
produce energetic suprathermal electrons; second, the absorp-
tion occurs at higher densities where the collisional rates
are large enough to pull atomic populations toward LTE;
third, the higher density also implies greater optical depth
and a stronger radiation field which also brings the atoms
closer to equilibrium.

Experiments on Be, CH, Ti and Au disks at shorter wave-
length (N = .53 1) are analyzed by Mead et al.l00 These
authors conclude that use of a NLTE model remains essential
for mid- to high-Z targets, and large errors would be made
in ionization and coronal temperatures if LTE were artifi-
cially enforced in the calculation.

Because of the complexity of the nonequilibrium
processes we offer only one simple generalization which
helps to interpret or guess the role of nonequilibrium in
laser plasma hydrodynamics:



G-12.) Steady-state nonequilibrium plasmas can
be described with heat-bath pictures which exhi-
bit the mechanism and direction of energy flow.

In a steady ablation plasma, enerqgy is absorbed via
laser heating of the free electrons and then converted to
radiation and ion expansion flow. Because up to 50 % of the
absorbed energy is emitted as recombination and line radia-
tion, one can say that this energy flows through or is
processed by the bound electrons.

The bound electrons function as a thermodynamic sub-
system (heat bath) collisionally coupled to a hotter bath of
free electrons and radiatively coupled to the colder photon
field. For optically thin plasmas most photons escape and
the ambient radiation field is low, corresponding to a zero-
temperature bath or heat sink.

According to LASNEX plasma simulations, the non-LTE
ionization in laser plasmas 1s intermediate between a coronal
equilibrium, corresponding to zero photon temperature, and
LTE per se.

At these conditions the bound populations are described
by an intermediate temperature determined by the relative
strength of collisional and radiative couplings.

For heavy atoms the radiative rates (scaling with %)
become very large, as do the optical depths. 1In high-Z disk

70 ] T T
60 |- Local thermal equilibrium |
(LTE) at Tg
50 ™ | ASNEX n
40 L NLTE |
f*\.l ~
30 — ]
20 |- %\D_D___ ]
Coronal
10 at Te \\\\.\\0 |
0 il | i |
1074 1073 1072 107" 10° 10’

Density (g/cm3)

FIG. 23. LASNEX calculations of ioniza-
tion for a planar-target ablation plasma
(Z = 79). The NLTE charge state is
significantly different from LTE or
coronal models using the local free-
electron temperature.



experiments one finds bound populations and even ion.charge
states effectively determined by the photon field which
jtself is cooler than the electron distribution.

These statements broadly characterise nonequilibrium
target calculations. In typical ablation plasmas we 4o not
find evidence of transient NLTE until relatively low
densities are reached, at which point the charge state is
frozen. At the higher densities a steady-state picture is
adequate.

Reference 3 describes a quantitative development of
these ideas: for plasmas with |Tg - Tel « Tg. the NLTE
steady-state is characterized by the principle of minimum
entropy production, which roughly translates into a statement
that the atomic populations adjust themselves to minimize
the efficiency of conversion of electron thermal energy to
X-rays.

Figure 21 indicates an entirely different heat-bath
picture for nonequilibrium plasmas, in which electron and
jon systems are coupled by slow energy exchange. During
most of the laser-target interaction the ion temperature is
predicted to lag behind the electron temperature by as much
as 50 %. This form of nonequilibrium has less effect on the
overall plasma dynamics, but the ion temperature plays a
role in setting the Coulomb logarithm which enters the laser
absorption, affects ion Doppler broadening, and of course
enters into thermonuclear reaction rates.

These remarks underline the importance of nonequilibrium
phenomena in laser-produced plasmas. The reader will find
further information in specialized review articles on non-LTE
atomic physics (McWhirterlOl), spectroscopic diagnostics
(deMichelis and Mattioli.1l92 peacock, and Grieml03), 1ine
formation and transport (Mihalas,26 Kunasle4& and x-ray
laser physics (Hagelstein.37 Pert, 105 Jaeglel 6).

APPENDIX
A. Saha Problems

For hydrogen plasmas the Saha equation reduces to a
simple (quadratic) form. Assume

number/cm3 of neutral hydrogen atoms

n =
o
3 . .
n+ = number/cm of positive 1ons (protons)
n, = n, + n_ = total atomic density

Because the plasma is neutral, the electron number density

is ng = n,. The Saha equation is then
n_n I
e + 2 1 (o]
= = = = exp ( - == ) (A-1)
n, X3 GN KT
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where \ (2ﬂh2 / ka)I/2

= electron thermal deBroglie wavelength

Io = e? /2a, = 13.6 eV = lonization potential
€n = -1y / n? = electron energy for principal
quantum number n
N
on _ 5 202 e-(€47€y) / KT
n=1

atomic partition function (N = maximum allowed
quantum number)

The average ionization state is Q = neg/nj = Na/(ng + n.).
and define

A =

N |-

3
nIk GN(T) exp(Io / KT)
Eq. (A-1) is then

1 -9 =802 or Q- %K (V1+4A -1) (A-2)

Example 1. Show that Tg3 = QeZ / RokT < .54 for all
p, T.

This result illustrates rule G-4 of the text. Tgj
is the electron-ion coupling parameter defined in Eq. (41).
The theorem is based on the Saha equation and fails at high-
density/low-temperature conditions where the Saha equation
where the Saha equation fails. The proof is very simple: one
forms the quantity Te? and uses Eq. (12) and the definition
of the deBroglie length N to show:

3
n.\ I
r § - ; ( 8_) Q3 ( o, 3/2
3vm

The Saha equation is used to replace nik3. giving

I 372 I
3 —
1“ - Q_(I_Q)_ L_ (ﬁ) exp(_ _0)
N 3vm kT

(A-3)

From this it can be seen that in never exceeds 0.154/GN .

because

Q(1-Q) < 0.25 all Q
x3/2e-X < 0.41 all x

No matter how one handles the truncation of excited states
in Gy We expect Gy > 1 and the theorem follows.

Example 2. The Saha equation agrees with the
average-atom model for strongly ionized plasmas but
disagrees significantly for the nearly-neutral case.
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The relative merits of average-atom and Saha theories
are a perennial subject of discussion. For hydrogen we have
exact analytic solutions which throw some light on the
(rather subtle) difference of the two approaches.

Using the Saha equation, we form the average

population (Pp) for the shell of principal quantum
number n:
(P.) = 2n? el — ) T KT Do
n SY Dy
Q
= 2n
- A-4
e(€h uw) / kT ( )

In the second form of this equation we employ the definition
of the electron chemical potential wu appropriate to
nondegenerate free electrons:

2_ eu/kT

n = Qon. = (A-5)
e i X3
In the average-atom model, the shell populations are
calculated by Fermi-Dirac statistics,
2
P - 0 (A-6)
n €. - M
1 + exp(n—)
kT

In this equation the chemical potential u is determined by
the requirement of neutrality,

o + ¥ Pn = 1 (A-7)
n
For a given plasma density (= nj) and temperature, the
charge state Q and electron chemical potential u of the

two theories could

Comparing Eqgs.

differ.

(A-4) and (A-6) strongly for ionized

plasmas (Q = 1) we see that the two theories predict
essentially equal chemical potentials and equal (small)
boundstate populations.

In the nearly neutral case (Q « 1) the situation is
more interesting. For the Saha equation, this limit is
achieved whenever exp((ey - n)}/KT) « 1; for the
average-atom theory, the nearly-neutral case occurs only 1if

L = e€7. The resulting approximate forms are:
o 3 exp(el/kT) 1/2 ) o _ 2 eel/kT
Saha n.k3 AR n.k3
i i
Surprisingly these do not agree; instead
2
%aa ® 2 %Sana € 9saha (A-8)

and in this limit the average-atom model predicts a much
lower degree of ionization.

.Fugther analysis of the equations reveals that this
prediction is caused by an exaggerated binding energy for
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negative ions in the average-atom theory. Of course, the
"exact” Saha theory altogether ignored the possibility of
negative ions.

Example 3. We consider a highly ionized hydrogen
plasma in complete thermal equilibrium, containing only a
small density of neutral atoms. We will show that the
neutrals cannot dominate the stopping power for charged
particles even though bound electrons are individually much
more effective at absorbing energy transfers due to their
lower velocities.

This calculation illustrates rule G-8. The assumptions
are

Vo € Vion <€ Ve (A-9)

where v_ = e2 / h = Bohr velocity, v_. = vkT/m = free

electrol thermal velocity. With thefe assumptions the
stopping power for an ion of charge 27, velocity Vjgp is
a sum of contributions from bound and free electrons,

awZ 2e4 2mv2 v 3

dE 1 ion “ion 2KT

ax = 2 [nolog(——j———) + a ne( v ) 109(;;5) 1(A-10)
mvion I e

where a = (1/3)v2/m and T ~ 15 eV is the hydrogen average
jonization excitation potential. The question is whether
the first term can ever be dominant as a consequence of the
velocity ratio in the free electron term.

Using the Saha equation, the ratio of the two
contributions can be expressed

(dE/d4x) v 3

Bound 3 0 2
(dE/dx) = amn (g7 ) @BuenL (A-11)
Free ion

where L = ratio of logarithms, ag = h?/2m.

This ratio is small (« 1) except at high densities where
a’n = 1 but in that case the K-shell is pressure ionized
o + .. . ) .
according to the ion-sphere criterion.

Note that Gy = 2N3/3 « n, 172 50 the
product n,Gy does not become large at low densities.
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